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AN IMPLICIT SEMIANALYTIC NUMERICAL METHOD FOR THE

SOLUTION OF NONEQUILIBRIUM CHEMISTRY PROBLEMS

By R. A. Graves, Jr., P. A. Gnoffo, and R. E. Boughner

INTRODUCTION

Many physical phenomena are modeled by systems of linear and/or nonlinear

ordinary differential equations (see for example references 1 to 5) which are

defined as stiff systems when a large spread in negative eigenvalues exists.

Such stiff systems commonly arise in nonequilibrium chemistry problems involving

kinetic and photochemical reactions. The governing equations for these stiff

systems are difficult to solve numerically using classical techniques because

the error growth is rapid,and unless the equations are integrated using a very

small time step, the results can be meaningless. To alleviate the problems

involved with stiff systems, a great deal of effort has been expended in

developing numerical solution techniques, both explicit and implicit, for

stiff ordinary differential equations. References 6 to 9 review some of the

more popular numerical methods and present the results of numerical comparisons

between the methods. A generalized conclusion resulting from the studies of

references 6 to 8 is that the implicit methods are more desirable because of

their increased stability and,in some instances, significantly fewer mathe-

matical operations. In these and other studies, a rather simple (yet

fundamental) implicit technique was not investigated because these

studies used a generalized equation which did not take advantage of



the form of the governing conservation equation for chemical species. The

governing conservation equations for systems of chemical reactions can generally

be written in the form of first-order ordinary differential equations. These

equations can be solved by a simple implicit semianalytic technique which is

derived from a quadrature solution of the governing equations. This method

is mathematically simpler than most implicit methods and has the exponen-

tial nature of the problem embedded in the solution.

The objective of this paper is to present the development of the semi-

analytic technique (SAT) and to compare its efficiency to that of several of

the more popular methods available.

SYMBOLS

a,b general coefficients, see equation (1)

C1,C 2  curve fit coefficients, see equation (5)

C1'C2 curve fit coefficients, see equation (6)

HS Hermite-Simpson

Rn [Yn - Y(Xn)]/Y(Xn)

h step size

RK4 fourth-order Runge-Kutta

DEQ Adams' fourth-order P-C

TM Treanor's method

DIFSYS modified midpoint rule

TR Trapezoidal rule

TR-EX Trapezoidal rule with extrapolation

CAL Calahan's method

LW1 Liniger-Willoughby - Method 1



LW3 Liniger-Willoughby - Method 3

SAT semianalytic technique

X eigenvalue

Y calculated value
n

Y(Xn) "exact value"

Stransformed coordinate, see equation 3a

MATHEMATICAL DEVELOPMENT

The governing equation for the conservation of chemical species in

nonequilibrium chemically reacting systems can generally be written in the

form of a first-order ordinary differential equation (see ref. 1-0):

dY
ddt + a(t)Y, = b(t) (1)

where a(t) and b(t) generally represent the loss and production rates of

species i, respectively. The solution of equation 1 in terms of quadratures

is: (This procedure is similar to that used in ref. 11.)

tJ+l tJ+l

-f a(t)dt tJ+l -f a(t')dt'
J+l J tJ t dt (2)

Y. = Y. e + f b(t)e, dt (2)
1 1 j \

This equation can be further simplified by introducing the transformation

tJ+1
= a(t')dt'

t

d = -a(t)dt

hence, equation 2 becomes:

3~~_



Y = Y e + f l b() C
1 0 a( e - E  (3)

where

J+1

w1 = J a(t)dt (4)
tJ

For the least complicated case, the coefficients a(t) and b(E)/a(E)

can be approximated by linear functions.

a(t) = C1 + C2 (t - tJ )  (5)

where

C1 = a(t J )

C a(tJ+1) - a(tJ)
2 At

b(S)a(E) c + C25 
(6)

where 1_ b(0)
1 a(O)

b( 1) b(O)
c a( 1)  a(0)

2 a

It should be noted that due to the transformation from t to E that

b(O) = b(t J + 1 )  b( l) _ b(tJ)
a(O) a(tJ+l)  a( 1 ) a(tJ)

Introducing equation 6 into equation 3 results in:

J+1 1
S ' e + (C- + C2 ) e - d (7)0



This equation can now b-e integrated by parts to obtain the following semi-

analytic implicit result:

+1 J 11 1
Y =Y e + (Cl + C2)(1 - e )- 2 1e (8)

(Note: To have stability and accuracy, it is necessary that e-l < 1.)

Equation 8 is semianalytic in nature and includes the inherent exponential

behavior of the stiff problem directly in the solution. Equation 8 must be

solved implicitly (iteratively) as the constants 1, Cl, and C2 depend on the

conditions at the advanced time t

An error analysis was performed, using the method of chapter 2 of refer-

ence 12, to determine the errors incurred in making the linear approximations

for the coefficients a(t) and b(E)/a(E). The lowest order error terms are:

E = - 3 3y(WJ) + At3 (N( 1  +E = 12 1 i

where y"(w) is the second derivative of the ratio b(E)/a(E) on the interval'

0 < m E ~l and B"() is the second derivative of a(t) on the interval

tJ 5 n 5 tJ + 1

Numerical Experiments:

System I (ref. 8)

Y = -0.04Y 1 + 10
4 Y2Y3

Y2 = 0.04Y - 104 Y23 - 3 x 107 Y2

Y' = 3 x 107 Y2
3 2

Y1 (O) = 1 Y2 (0) = 0 Y3(0) = 0

This system is nonlinear,and no exact solution for this system exists.

The eigenvalues, determined from the Jacobian iatrix of the-system at X = 0

5...



re X = 0, X2 = 0 and X3 = -0.04. Xmax changes from 0.04 to 2405 for

0 5 X 5 0.02. The eigenvalues for 0 < X < 40 are all strictly negative or

zero, with X1 = 0, X2 z _10 -  and X3  -103 to -104. The sharp increase in

the magnitude of X, makes this a particularly difficult stiff system to

work with. In addition this system presents some starting problems for SAT

since a2 (0) = 0 and hence b2 (~l)/a 2( 1) is meaningless. To circumvent this

problem for Y2, two techniques using constant h were tried: first, the

Hermite-Simpson method, reference 13, and secondly, the Runge-Kutta fourth-order

method. The RK4 start gave the best results. Table I gives the results for

this system on the CDC 6600 as well as the results of Lapidus and Seinfeld,

reference 8, for the IBM 7094. (The CDC 6600 is approximately 10 times faster

than the IBM 7094.) It should be noted that due to the nature of this system

Y3 (X) was calculated by Y3 (X) = 1 - Y2(X) - Y1 (X).

The most successful application of the SAT was to use the RK4 one step

to obtain Y1(0.0005), Y2(0.0005), and Y3 (0.0005) and then use the SAT with

a step size of 0.2 to compute the solution from 5 X 10-4 < X < 40. As can be

seen in figures 1 and 2 the linear approximation for b(E)/a(E) is very
accurate for this system.

System II (ref. 8)

Y' = -200 (Y - F(X)) + F'(X)

Y(O) = 10

F(X) = 10 - (10 + X)e

Exact Solution Y(X) = F(X) + 10e- 200 X

Here, F(X) is a slowly decaying solution component and 10e -20 0X decays

rapidly. The large negative eigenvalue of -200 makes exp(-200X) negligible

compared to exp (-X) in the F(X) component. Results using SAT on the

CDC 6600 are compared to results obtained by Lapidus and Seinfeld in Table 2.

6



At equivalent step sizes, SAT produced R 'less than or equal to the error
n

encountered using other methods, and worked faster than any other method (times

for this system are based on computing over a range 0 < X < 15)

System III (ref. 8)

Y = -0.1Y 1 - 49.9Y 2

2 2Y2 = -50Y 2

Y' = 70Y - 120Y 3

Y1(0) = 2 Y2 (0) = 1 Y3 (0) = 2

Exact Solution:

-0.1X -50X
Y1(X) = e + e

Y2 (X) =e

-50X -120X
Y3 (X) = e +e

Eigenvalues X1 = -120, X2 = -50, X3 = -0.1

Because the solution components due to Xi and X2 decay rapidly, a

stiff method which was not restricted by the magnitude of these values is

desired. The SAT (which yields the exact solution of Y2 (X) for any h since

the linear approximation to a(X) and b/a{() gives the true variation

of these functions) is compared to results obtained by Lapidus and Seinfeld in

Table 3. An h = 0.01 produced results which were better than the results

obtained by any other method. However as the step size increased, the

accuracy dropped off rapidly and at an h = 0.2, the solution was very different

from the exact solution (except, of course, for Y2(X) which remained exact).

7



After examining the problem, it was found that on an interval

of 0 5 X < 0.2, with h = 0.2, the linear approximation to b/a() was

very poor. For example, b/a(X) = -400e- 5 0X and b3/a3 (X) = (70/120)e
- 5 0 X

(see fig. 3). The effect of these terms on b/a(E) decays rapidly after

X = 0.2, and they can be approximated by a linear function, so a method was

tried using h = 0.01 to arrive at X = 0.2 and then proceed from X = 0.2

with h = 0.2. This method was the fastest and yielded reasonable results.

System IV

Y1 = 0.8Y2 - 0.01Y - 107 Y1 Y2 3 + 10Y1 Y3  100YY2

Y2 = -0.8Y 2 - 10Y Y3 + 106 Y2Y4 +104 4Y

= 0.01Y2 + 107 7Y Y + 2000Y - 104 Y Y

Y = -106 Y2Y4 + 100Y 1 Y2  20000Y4

Y1 (0) = 0.9; Y2(0) = 0.05; Y3 (0) = 0.05; Y4 (0) = 0

No exact solution for this nonlinear system was obtained. The eigenvalues

for this system, calculated from the Jacobian using values of Y from RK4,

are widely separated in magnitudes. All of the eigenvalues are negative or

0 on a range 6.146 x 10- 6 < X < 7.36 x 10- 6 . Typical values on the range are

at X = 7 x 10-6, 1 = -1.017 x 10 2 = -4.979 x 104' A -2.7102 x 101 and

-9/
A4 

= -2.515 x 10 . Results for this system appear in Table 4. This system

was only stiff for a short time and none of the methods had problems with

stability on a range 0 5 X 5 2 x 10-5. Using RK4 with h = 1X 10-8 as a

standard of comparison, the tables indicate that for any given step size, RK4

was more accurate than any implicit method. SAT gave accuracy comparable to

other implicit methods and ran at approximately the same speeds as these

methods for equivalent step sizes. In th-is system, SAT showed no advantage

8



over any other method. However, this system does indicate that SATgives

reasonable results for nonstiff nonlinear systems.

CONCLUDING REMARKS

As developed herein the crucial approximation is the linearization of.

the coefficients within the integral in the quadrature form which allows 
the

semianalytic form to be obtained. In some cases this approximation is very

good but in some applications, the linear approximation can be 
in error for

what appear to be not unreasonable time steps. As demonstrated, this problem

was overcome by having a variable time step which is small in the region where

the Linear Approximation is in error.

Additionally, quadratic and exponential curve fits were tried. However

these approximations produced results which were approximately equivalent to

those obtained with the linear approximation. Because the linear approxima-

tion was the simplest to program and because of the consistently good results

it yielded, it was chosen as the most desirable approximation evaluated.

An important feature of the semianalytic technique is that it will allow

the computation of nonequilibrium chemical systems to and including the equi-

librium state. For systems where the rates.are large (typical of'approaching

equilibrium) the SAT equilibrium condition is the exact solution for

equilibrium.

As demonstrated in the example problems, the semianalytic technique is

both rapid and accurate and should be applicable to those stiff 
problems which

can be modeled by an equation like that used in this development.
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TABLE I.- COMPARISON OF RESULTS FOR SYSTEM I

R1N R2N R3N Time, sec

Method h
X = 0.4 X = 10 X = 0.4 X = 10 X = 0.4 X = 10 IBM 7094 CDC 6600

RK4 0.001 0 0 0 0 0 0 - -

DEQ 0.001 - - - - - -

TM 0.01 - - - - - - - -

DIFSYS 0.001 - - - - - - - -

TR 0.2 1.35x10-3 1.05x10-3 2.12x10 - 2.4x10 -1  9x10 - 2  1.5x10- 2  9.3 -

TR-EX 0.2 1.72x10-5 3.6x10 -4 3.5x10 - 2 4.3x10 -4  6.8x10- 4  1.2x10- 3  34 -

CAL 0.005/0.02 2. 4x10- 3 1.01xl0 - 1 2.5x10 0  6.0x10 - 1  1.62x10-1 5.4x10 -  10 -

LW1 0.2 1.6x10 -4 4.9x-10 -4  2.4x10 -4  1.3x10 -4  3.2x10 -3  4.4x0 -4  20 -

LW3 0.2 5.9x10-4  7.1x10 - 5 2.9x10-3  1.1x10-3  4x10 - 2  1.9x10 -3  23.3

RK4 0.0005- 0 0 0 0 0 0 - 20.7

HS 0.001 2.5x10- 5 6.88x10-3 1.26x10-4 2.86x10 - 2 1.66x10 - 3 3.65x10 - 2  - 168

SAT
(HS Start) 0.001 4.07x10 -5 2.54x10 -4 1.25x10 - 3 1.97x10 - 4 1.87x10 - 2 6.52x10 -4  - 37

SAT
(HS Start) 0.001/0.1 3.79x10- 5 2.42x10 -4 1.25x10 - 3 1.95x10 -4 1.88x10 - 2 6.33x10 - 4  - 4

SAT
(RK4 Start) 0.0005/0.2 2.26x10-6 1.31x10 - 5 1.62x10 -7 1.74x10 - 5 1.97x10 - 5 4.44x10 -5  - 1.43

SAT 0.0005 to X=0.1
(RK4 Start) then 0.3 1.97x10 - 5 3.96x10- 5 9.04x10 - 5 1.62x10 -4 1.31x10 - 3 2.1x10 -4 - .9



TABLE 2.- COMPARISON OF RESULTS FOR SYSTEM II

IBM 7094 CDC 6600
Method h X = 0.4 X = 10

Time, sec Time, sec

RK4 0.01 1.0 x 10- 5  2.0 x 10 11 -

DEQ 0.005 3.0 x 10 2.0 x 10 18 -

TM 0.2 6.7 x 10-8 1.0 x 10 9  16.5 -

DIFSYS 0.1 (a) (a) (a) -

TR 0.2 1.85 x 10-2 4.3 x 10- 5  2 -

TR-EX 0.2 1.4 x 10-4  1.0 x 10- 8  36 -

CAL 0.01/0.2 1.7 x 10- 2  4.0 x 10 - 8  1 -

LW1 0.2 1.1 x 10- 3  5.0 x 10- 8  3 -

LW3 0.2 1.8 x 10- 3  9.0 x 10- 8  4 -

SAT 0.2 9.35 x 10-4 4.1 x 10 - 8  - 0.09

(a) Unstable



TABLE 3.- COMPARISON OF RESULTS FOR SYSTEM III

Method h R1N R2N R3N Time, sec Time, sec

X = 0.4 X = 10 X = 0.4 X = 0.4 IBM 7094 CDC 6600

RK4 0.01 2.0 x 10- 7  5.4 x 10- 7  3.0 x 10-1 3.0 x 10-1 20

DEQ 0.01 2.0 x 10-4  8.1 x 10- 7  9.5 x 10- 1 7.4 x 105 23

TM 0.2 4.0 x 10 - 4  1.35 x 10 - 4 1.1 x 105 1.2 x 105 1

DIFSYS 0.1 5.0 x 10- 4  2.16 x 10 - 4 9.4 x 10 - 1 8.3 x 102 22

TR 0.2 1.0 x 10-3  2.7 x 10 6.5 x 107 1.3 x 105 1.3

TR-EX * 0.2 4.0 x 10-5  8.1 x 10-4  5.7 x 101 8.0 x 101 30

CAL 0.01/0.2 2.0 x 10 - 3  2.7 x 10 - 6  2.5 x 105 1.6 x 105 1

LW1 0.2 4.0 x 10 - 3  1.1 x 10- 2  5.0 x 105 5.0 x 105 3

SAT
0.01 to X = 0.2
0.2 afterX=0.2 2.13 x 10 2.08 x 10 0 5.3 x 10 0.27



TABLE 4.- COMPARISON OF RESULTS FOR SYSTEM IV

Time, sec RIN R2N R3N  R4N
Method h

CDC 6600 X=1x10- 6 X=2x10- 5 X=1x10-6 X=1x10-6 X=1x10-6 X=2x10-5  X=1x10- 6 X=2x10-5

I -
RK4 10- 8  2.94 0 0 0 0 0 0 0 0

RK4 10- 6  0.0384 9.17x10 -6 3.11x10 -3  0 0 9.24x10-3 4.21x10 - 6 1.38x10-5 1.26x0 -4

TRAP 2x10 - 8  6.11 0 0 0 8x10 - 6  2.56x10 - 6  0 2.31x10 - 6  0

TRAP 10- 6  0.177 4.67x10-4 7.1x10 - 2  0 1.0x10 - 5 5.24x10 - 3 9.59x10 - 5 9.73x10 - 4 8.9x10 -5

SAT 5x10 - 8  4.3 1.94x0 -5 5.47x0 - 3 5.90x10 -4 5.82x10 - 4 2.04x10 -4 9.48x10 - 6 4.48x10 - 4 5.71x10 - 4

SAT 10- 6 0.159 4.65x10-4 9.62x10 -3 1.6x10 -5 6.Ox 5.75x10 - 4 8.98x10 -4 1.30x10 - 3 1.32x10- 3
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